HEINRICH NÖTH und GERHARD MIKULASCHEK

Beiträge zur Chemie des Bors, VII 1)

Über die Reaktion des Diborans mit aliphatischen Sulfenylaminen

Aus dem Institut für Anorganische Chemie der Universität München (Eingegangen am 23. September 1960)

Durch Einwirkung von Dimethylamin und Diäthylamin auf Methylsulfenylchlorid wurden erstmalig die Verbindungen CH₃-S-NR₂ (R = CH₃, C₂H₅) dargestellt. Diese reagieren mit Diboran zu den Addukten CH₃-S-NR₂·BH₃, die sich bei Raumtemperatur unter Spaltung der Schwefel-Stickstoff-Bindung zu CH₃-S-BH₂·HNR₂ umlagern und beim Erhitzen unter Wasserstoffentwicklung in CH₃-S-BH-NR₂ übergehen.

Die Stickstoff-Stickstoff-Bindung des Tetramethylhydrazins ²⁾ und die Phosphor-Phosphor-Bindung des Tetramethyldiphosphans ^{2,3)} wird durch Diboran, nach erfolgter Adduktbildung, quantitativ gespalten. Auf Grund des Reaktionsverlaufes wurde eine Hydridverschiebung als Primärschritt der Spaltung angenommen²⁾. Weitere Untersuchungen sollten zeigen, ob auch die Element-Stickstoff bindung durch Einwirkung von Diboran oder anderen Lewis-Säuren spaltbar ist. Dies ist, wie eigene Versuche und die von A. B. Burg und J. P. Slota jr. ⁴⁾ kürzlich beschriebene, kompliziert verlaufende Zersetzung von (CH₃)₂PN(CH₃)₂·BH₃ und (CH₃)₂PN(CH₃)₂·2 BH₃ zeigen, tatsächlich der Fall. Wir studieren deshalb die Einwirkung von Lewis-Säuren auf Dimethylaminoverbindungen der Elemente Schwefel, Phosphor, Arsen, Silicium und Bor mit dem Ziel, die Additionsrichtung und den Spaltungsmechanismus in Abhängigkeit von der Elektronegativität des betreffenden Elementes festzustellen. In der vorliegenden Arbeit berichten wir über die Einwirkung von Chlorwasserstoff und Diboran auf Methylsulfenyl-dialkylamine.

Aromatische Sulfenylamine der allgemeinen Form $Ar-S-NR_2$ (Ar= aromatischer Rest, R= Alkylrest oder H) sind seit langem bekannt⁵⁾. Aliphatische Sulfenylamine der allgemeinen Zusammensetzung $R-S-NR_2$ (R= Alkylreste) sind hingegen noch wenig untersucht. Die bisher niedrigsten Homologen sind die von R. T. Major und H. L. Peterson⁶⁾ durch Aminolyse der entsprechenden Sulfenylrhodanide dargestellten Verbindungen $C_2H_5-S-N(C_2H_5)_2$ und $C_3H_7-S-N(C_3H_7)_2$. Schließlich ist auch ein $(CH_3)_3C-S-N(CH_3)_2$ bekannt⁷⁾. Methylsulfenyl-dialkylamine waren

¹⁾ VI. Mitteil.: H. NÖTH und W. MEISTER, Chem. Ber. 94, 509 [1961].

²⁾ H. Nöth, Z. Naturforsch. 15b, 327 [1960].

³⁾ A. B. Burg, J. inorg. nucl. Chem. 11, 259 [1960].

⁴⁾ J. Amer. chem. Soc. 82, 2145 [1960].

⁵⁾ Eine Zusammenfassung gibt N. Kharasch, S. J. Potempa und H. L. Wehrmeister, Chem. Reviews 39, 269 [1946].

⁶⁾ J. Amer. chem. Soc. 78, 6181 [1956].

⁷⁾ H. RHEINBOLDT und E. MOTZKUS, Ber. dtsch. chem. Ges. 72, 657 [1939].

bisher unbekannt, wohl deshalb, weil das Methylsulfenylchlorid, CH₃SCl, das erst 1950 erstmalig dargestellt wurde⁸⁾, wegen seiner großen Zersetzlichkeit schwer zu handhaben ist.

Die Dialkylaminolyse des Methansulfenylchlorids führt mit R = Methyl

$$CH_3-S-Cl + 2 NHR_2 \xrightarrow{\text{Äther}} CH_3-S-NR_2 + R_2NH \cdot HCl$$

$$I: R = CH_3$$

$$II: R = C_2H_5$$
(1)

in mäßiger Ausbeute bei -60° in äußerst heftiger Reaktion zum Methylsulfenyldimethylamin (I), während das Diäthylderivat II bei -50° mit 70-proz. Ausbeute entsteht. I und II sind stechend riechende farblose Flüssigkeiten. Als Nebenprodukt entsteht bei beiden Umsetzungen Dimethyldisulfid, CH_3SSCH_3 .

I und II werden bei Raumtemperatur von Wasser oder Alkali nur sehr langsam angegriffen, mit verdünnter Säure tritt dagegen rasch Hydrolyse ein. Bei der Einwirkung von verd. Salzsäure entstehen Dimethyldisulfid, Dialkylamin-hydrochlorid und weitere schwefelhaltige Produkte⁹⁾.

REAKTION MIT CHLORWASSERSTOFF

Chlorwasserstoff reagiert mit den Methylsulfenyl-dialkylaminen unter Rückbildung des Methylsulfenylchlorids:

$$CH_3-S-NR_2 + 2 HCI \longrightarrow CH_3-S-CI + R_2NH \cdot HCI$$
 (2)

Bei dieser sehr heftig verlaufenden Reaktion, die sich durch Arbeiten in absol. Äther und bei tiefer Temperatur mäßigen läßt, dürfte der erste Reaktionsschritt in der Anlagerung eines Protons an das Stickstoffatom bestehen¹⁰⁾, dem ein nucleophiler Angriff eines Chloridions auf das Schwefelatom unter Spaltung der S-N-Bindung folgt:

$$CH_{3}-\overline{\underline{S}}-\underline{\overset{N}{N}}-R \xrightarrow{+ HCl} \begin{bmatrix} R \\ CH_{3}-\overline{\overset{S}{\underline{S}}}\overset{\underline{\theta}}{\overset{N}}-R \\ H \end{bmatrix} Cl^{\underline{\Theta}} \xrightarrow{CH_{3}-\overline{\overset{S}{\underline{S}}}-Cl} \xrightarrow{+ \overset{R}{\overset{N}{N}}-R} (3)$$

Die primäre Bildung eines Methylsulfenyl-dialkylammoniumchlorids nach (3) war bei der Einwirkung von HCl auf CH₃SNR₂ in Äther bei -40° nicht zu beobachten.

Diese instabile Zwischenstufe ist wohl auch bei der Einwirkung von wäßriger Salzsäure auf CH₃SNR₂ das erste Reaktionsprodukt, das unter Spaltung der S-N-Bindung weiterreagiert. Das gebildete Methylsulfenylchlorid wird hier jedoch sofort hydrolysiert unter Bildung der oben beschriebenen Produkte.

⁸⁾ H. Brintzinger, K. Pfannstiel, H. Koddebusch und K. E. Kling, Chem. Ber. 83, 87 [1950].

⁹⁾ Eine Übersicht über die möglichen, schwefelhaltigen Produkte geben A. Schöberl und A. Wagner in Methoden der organ. Chemie (Houben-Weyl), Bd. 9, 4. Aufl., G. Thieme Verlag, Stuttgart 1955.

¹⁰⁾ Dieser Anlagerung kann eine Sulfoniumsalzbildung vorausgehen, die sich jedoch nicht nachweisen ließ. Hierauf kann man jedoch aus dem Verhalten von S(NR₂)₂ und P(NR₂)₃ gegenüber den Halogenen, RJ und anderen elektrophilen Agentien schließen.

REAKTION MIT DIBORAN

Beide Methylsulfenyl-dialkylamine reagieren mit Diboran bei -60° im Bombenrohr nach:

$$2 CH_3 - \overline{S} - NR_2 + (BH_3)_2 \longrightarrow 2 CH_3 - \overline{S} - NR_2$$

$$III: R = CH_3$$

$$IV: R = C_2H_5$$
(4)

Dabei ist die Umsetzung mit II von keiner Nebenreaktion begleitet, während bei der Einwirkung von Diboran auf I bei --40° etwas Wasserstoff entsteht. Auch die Folgereaktionen sind bei der Verbindung CH₃SN(C₂H₅)₂·BH₃ (IV) eindeutiger, weshalb wir diese zuerst beschreiben.

IV ist offensichtlich nur bei tiefer Temperatur beständig und lagert sich bei Raumtemperatur, wie das Auftreten einer N-H-Valenzfrequenz für 4-bindigen Stickstoff im IR-Spektrum zeigt, in N-Diäthyl-B-methylmercapto-borazan, $CH_3SBH_2 \cdot HN(C_2H_5)_2$ (V), um.

Diese Verbindung, Schmp. 1°, dissoziiert beim Erwärmen langsam in CH_3SBH_2 und $(C_2H_5)_2NH$ ebenso wie die von A. B. Burg und R. I. Wagner 11) beschriebene Verbindung $CH_3SBH_2 \cdot N(CH_3)_3$. Beim Erhitzen im Bombenrohr auf 200° wurde keine Wasserstoffabspaltung beobachtet. Bei 280° entsteht jedoch je Mol Verbindung 1 Mol Wasserstoff:

$$CH_3 - S - BH_2 \cdot HN(C_2H_5)_2 \longrightarrow CH_3 - S - BH - N(C_2H_5)_2 + H_2$$
 (5)

und es bildet sich dabei Methylmercapto-diäthylamino-boran (VI), neben sehr wenig N-Diäthyl-borazen (dimere Form).

I reagiert mit Diboran, wie erwähnt, bei -40° im Molverhältnis 2:1, jedoch entsteht selbst bei dieser tiefen Temperatur schon etwas Wasserstoff. Beim Erhitzen des Reaktionsproduktes auf 120° entsteht in zweitägiger Reaktion nicht die analog (5) zu erwartende Menge Wasserstoff. Aus dem flüssigen Reaktionsgemisch konnte eine Fraktion der Zusammensetzung $CH_3SBH_2 \cdot HN(CH_3)_2$ abgetrennt werden; als Destillationsrückstand verblieb ein gelbliches, nichtflüchtiges Öl, das nicht identifiziert wurde.

Läßt man überschüssiges Diboran bei 110° auf I einwirken, so entsteht Wasserstoff, Dimethylaminodiboran und das gesuchte $CH_3-S-BH-N(CH_3)_2$, neben anderen, nicht identifizierten, schwefelhaltigen Produkten:

III
$$\longrightarrow$$
 $H_2 + CH_3 - S - BH - N(CH_3)_2$ (6)

Das Auftreten von Dimethylaminodiboran führen wir darauf zurück, daß das im Gleichgewicht:

$$CH_3-S-BH_2\cdot HN(CH_3)_2 \xrightarrow{\longleftarrow} CH_3-S-BH_2 + (CH_3)_2NH$$
 (7)

stehende Dimethylamin mit dem vorhandenen, überschüssigen Diboran nach¹²⁾:

$$(CH_3)_2NH + B_2H_6 \longrightarrow (CH_3)_2NB_2H_5 + H_2$$
 (8)

reagiert.

¹¹⁾ J. Amer. chem. Soc. 76, 3307 [1954].

¹²⁾ A. B. Burg und C. L. RANDOLPH, J. Amer. chem. Soc. 71, 3451 [1949].

In den Methylsulfenyl-dialkylaminen I und II stehen dem Angriff der Lewis-Säure BH_3 drei freie Elektronenpaare, eines am Stickstoffatom, zwei am Schwefelatom, zur Anlagerung zur Verfügung. Während man die Addition von 2 Mol BH_3 je Mol CH_3SNR_2 erwarten kann, lagert sich nur 1 Mol BH_3 an. Obgleich das Aminostickstoffatom stärker basisch als das Schwefelatom sein dürfte, und die Addition der BH_3 -Gruppe am Stickstoffatom bevorzugt erfolgen sollte, nehmen wir auf Grund der leichten Umlagerung des Adduktes IV zu V an, daß die BH_3 -Gruppe am Schwefelatom gebunden ist, da dann eine zusätzliche Resonanzstabilisierung (IV a \leftrightarrow IV b) erfolgen kann:

Diese Formulierung erklärt auch, daß sich nur 1 Mol BH₃ je Mol CH₃SNR₂ addiert, da die Basizität des Stickstoffatoms durch die Mesomerie herabgesetzt wird.

Da die BH₃-Gruppe dem Sauerstoffatom isoster ist, kann man diese BH₃-Addukte (III und IV) den Verbindungen CH₃S(O)NR₂ zur Seite stellen. Die Umlagerung des BH₃-Adduktes zu V erfolgt vermutlich aus IVb unter Hydridverschiebung:

In dem entstandenen Borazan V besitzen die am Bor gebundenen H-Atome eine negative Partialladung, das am Stickstoff gebundene H-Atom eine positive, so daß bei erhöhter Temperatur in der bei den Borazanen bekannten Weise Wasserstoff unter Borazenbildung abgespalten wird.

Die Schwefel-Stickstoff-Bindung in Methylsulfenyl-dialkylaminen wird also durch Diboran nach erfolgter Adduktbildung leicht gespalten, wobei man auf Grund des Reaktionsverlaufes eine Anlagerung der BH₃-Gruppe an das Schwefelatom fordern muß.

BESCHREIBUNG DER VERSUCHE

Ausgangsstoffe

Dimethyldisulfid, CH₃SSCH₃: Da wir bei der Alkylierung von Na₂S₂ mit Natriummethylsulfat¹³⁾ nur sehr geringe Ausbeuten erhielten, haben wir mit Methylchlorid alkyliert.

Techn. Na_2S ($Na_2S \cdot 9$ H_2O) wurde mit der berechneten Menge Schwefel geschmolzen und die erkaltete Schmelze klein zerteilt. Das Na_2S_2 wurde mit Methanol durch Kochen unter Rückfluß herausgelöst und in die Lösung (150 g Na_2S_2 in 1500 ccm CH_3OH) bei Raumtemperatur unter Rühren Methylchlorid eingeleitet. Nach 1 Stde. setzte die Reaktion unter Erwärmen und Abscheidung von NaCl ein, nach etwa 6 Stdn. war die anfangs gelbe Lösung entfärbt und die Reaktion beendet. Nun versetzte man das Reaktionsgemisch mit 3500 ccm Wasser und schüttelte gut durch, wobei sich das Dimethyldisulfid als gelbes Öl abschied, das abgetrennt wurde. Der in der Lösung verbliebene Anteil wurde mit Äther extrahiert. Das Öl wurde zusammen mit den Ätherauszügen über CaCl₂ getrocknet, der Äther abdestilliert und das Dimethyldisulfid über eine Füllkörperkolonne fraktioniert. Farblose Flüssigkeit, Sdp.720 $109-110^\circ$, Schmp. -85.5° (Lit.: Sdp. $112^{\circ}13$), Schmp. $-84.69^{\circ}14$). Ausb. 57 g (45%, bez. auf einges. Na_2S_2).

Methylsulfenylchlorid, CH_3SCl , wurde nach der Vorschrift von I. B. DOUGLASS und BASIL SAID FARAH ¹⁵) durch Umsetzung von Dimethyldisulfid mit Chlor bei -35° hergestellt und, wie von Brintzinger und Mitarbb.⁸) beschrieben, destilliert. Dann erfolgte eine nochmalige Reinigung durch fraktionierte Kondensation i. Hochvak. (Ausgangsbad: -20° , Vorlage 1: -35° , 2: -70° , 3: -145°), wobei sich das reine CH_3SCl in 2 kondensierte. Sdp.₅₄ 26°. Die Ausbeute war fast quantitativ.

CH₃SCl ist eine charakteristisch gelbrote, nur bei tiefer Temperatur längere Zeit haltbare Flüssigkeit, die sehr hydrolyseempfindlich ist. Sie wurde in Ampullen bei -78° aufbewahrt. Da das CH₃SCl Quecksilber sofort angreift, war eine Dampfdruckbestimmung nicht möglich (0°-Tension etwa 185 Torr). Die Verbindung muß äußerst vorsichtig gehandhabt werden, denn sie ruft beim Einatmen, auch in kleinster Menge, heftige Kopfschmerzen hervor und führt, auf die Haut gebracht, zu schwer heilenden Ausschlägen.

CH₃ClS (82.5) Ber. Cl 42.94 Gef. Cl 42.64

Methylsulfenyl-dimethylamin (1): In einem 250-ccm-Dreihalskolben, der mit Rückflußkühler, Rührer und Tropftrichter versehen ist, wurden 27 g (0.6 Mol) Dimethylamin in 150 ccm absol. Äther auf -60° gekühlt und unter Feuchtigkeitsausschluß und Rühren eine auf -10° gekühlte Lösung von 24.8 g (0.3 Mol) CH_3SCI in 70 ccm Äther langsam tropfenweise zugegeben. Nach Beendigung der heftigen Reaktion wurde noch $^{1}/_{2}$ Stde. weitergerührt und dann das Reaktionsgemisch auf Raumtemperatur gebracht. Die äther. Lösung wurde vom ausgefallenen Dimethylamin-hydrochlorid abgetrennt und nach Abziehen des Äthers I i. Vak. destilliert. Es ist eine farblose, stechend riechende Flüssigkeit vom Sdp. 75 32 $^{-34^{\circ}}$. Ausb. 8 g (30%, bez. auf einges. CH₃SCI).

Zur nochmaligen Reinigung wurde i. Hochvak. fraktioniert kondensiert (Ausgangsbad: -15° , Vorlage 1: -25° , 2: -74° , 3: -183°). Das reine Produkt sammelt sich in 2. Da es Quecksilber unter HgS-Bildung langsam angreift, konnten wir keine Dampfdruckkurve aufnehmen. Schmp. -36° . Dampfdruck bei 0° 20.9 Torr.

C₃H₉NS (91.2) Ber. N 15.35 Gef. N 15.11 Mol.-Gew. 92.8, 90.8 (Dumas)

¹³⁾ P. C. RAY und S. C. SEN GUPTA, Z. anorg. allg. Chem. 187, 33 [1930].

¹⁴⁾ D. T. McAllan, T. V. Cullum, R. A. Dean und F. A. Fidler, J. Amer. chem. Soc. 73, 3627 [1951].

¹⁵⁾ J. org. Chemistry 24, 973 [1959].

Benötigt man beim Arbeiten im Hochvak. nur kleine Mengen von I (0.1-1.5 g), so kann man diese gleich in der Hochvak.-Apparatur herstellen. Dazu wird in eine Falle Äther und Dimethylamin eindestilliert und die berechnete Menge Methylsulfenylchlorid auf kondensiert. Bei -65° setzt die Reaktion unter Abscheidung von Dimethylamin-hydrochlorid und Entfärbung der gelbroten Lösung ein. Unter Magnetrühren wird das Gemisch innerhalb von 2 Stdn. auf -20° aufgetaut und dann der Äther (mit evtl. noch vorhandenem Dimethylamin) bei -65° abdestilliert. Aus dem Destillationsrückstand läßt sich dann das $CH_3SN(CH_3)_2$ rein herausfraktionieren.

Methylsulfenyl-diäthylamin (II): wurde analog I aus 25.6 g (0.31 Mol) Methylsulfenyl-chlorid in 80 ccm Äther und 45.4 g (0.62 Mol) Diäthylamin in 150 ccm Äther bei -50° erhalten.

II ist eine farblose, stechend riechende Flüssigkeit vom Sdp.₈₀₋₈₃ 63-64°, Schmp. -59.8°. Ausb. 26 g (70%, bez. auf einges. CH₃SCl).

Bei der anschließenden Reinigung durch fraktionierte Kondensation i. Hochvak. (Ausgangsbad: 10° , Vorlage 1: 0° , 2: -40° , 3: -120°) wurde nach zweimaliger Wiederholung in 2 tensionsreines II erhalten.

C₅H₁₃NS (119.2) Ber. N 11.74

Gef. N 11.43 Mol.-Gew. 118.1 (Dumas), 119.4 (kryoskop. in Benzol)

Dampfdrucke von II im Temperaturbereich von 0-56°

t, °C	0	4.9	6.4	9.4	12.6	15.2	21.4	26.8	40.1	48.5	55.6
p Torr ber.	3.58	4.83	5.29	6.31	7.60	8.81	12.67	16.47	31.91	47.12	64.46
p Torr gef.	3.78	4.81	5.31	6.42	7.73	9.09	12.20	15.88	31.39	46.55	62.36

Hieraus errechnet sich die Dampfdruckkurve zu:

$$\lg p = 7.9812 - 2029 \cdot 3/T$$

Daraus ergibt sich die molare Verdampfungswärme zu 9257 cal, die Troutonsche Konstante zu 23.2 cal/° und der extrapolierte Siedepunkt zu 124.7°.

Im IR-Spektrum¹⁶) treten folgende Frequenzen (cm⁻¹) auf: 2950 sst, 2899 st, 2809 st, 1466 m, 1445 m, 1437 m, 1414 m, 1381 st, 1366 st, 1362 m, 1337 m, 1289 s, 1177 m, 1161 m, 1129 s, 1110 m, 1080 m, 1057 m, 939 m, 846 s, 791 s, diff., 878 s.

Saure Hydrolyse des Methylsulfenyl-diäthylamins: In einem kleinen, verschließbaren Kölbchen wurden etwa 0.5 g II mit 30 ccm 2 n HCl gut durchgeschüttelt und 2 Stdn. stehengelassen. Nach Extraktion mit Äther wurde die Lösung zur Trockene eingeengt und das zurückgebliebene Festprodukt in Äther/Methanol umkristallisiert: Schmp. 222°, es war Diäthylaminhydrochlorid. Die äther. Lösung zeigte die für Disulfide charakteristische Nitroprussidnatrium-Reaktion. Weitere vorhandene, schwefelhaltige Produkte wurden nicht untersucht.

Einwirkung von Chlorwasserstoff auf Methylsulfenyl-dialkylamine

a) 0.9 g I (10 mMol) wurden in einer Falle der Hochvak.-Apparatur mit 30 mMol HCl zusammenkondensiert und durch langsames Auftauen bis -15° zur Reaktion gebracht. Aus dem gelbroten Reaktionsgemisch wurde CH_3SCl abdestilliert (0.7 g = 8.5 mMol ¹⁷⁾) und durch Farbe, Geruch und Analyse charakterisiert.

¹⁶⁾ Die IR-Spektren wurden mit einem Spektrograph Perkin Elmer 21 als Kapillarfilm zwischen NaCl-Platten aufgenommen. Herrn Dr. H. P. Fritz danken wir für die Aufnahme der Spektren herzlich.

¹⁷⁾ Die Ausbeute bezieht sich auf reines Produkt. Die Ausbeute an Rohprodukt liegt nahe bei 100%.

Der nichtflüchtige Rückstand war *Dimethylamin-hydrochlorid* (0.8 g = 9.5 mMol), Schmp. 171°.

b) Eine Lösung von 5 g II (42 mMol) in 50 ccm Äther wurde mit gut getrocknetem HCl unter Kühlung (Eis-NaCl) gesättigt. Die Reaktion setzte sofort unter Abscheidung von Diäthylamin-hydrochlorid und Auftreten der charakteristischen gelbroten CH_3SCl -Farbe ein. Nach Abdestillieren des Äthers wurde das CH_3SCl destilliert (1.9 g = 23 mMol ¹⁷⁾). Als Rückstand verblieben 4 g (37 mMol) $(C_2H_5)_2NH \cdot HCl$, Schmp. 222°.

Reaktion von Methylsulfenyl-diäthylamin mit Diboran

Zur Durchführung dieser und der folgenden Umsetzungen haben wir, um die Atmosphäre und Feuchtigkeit auszuschließen, eine konventionelle Stocksche Hochvak.-Apparatur benützt. Als Reaktionsgefäße dienten Bombenrohre (Inhalt 60-70 ccm), die mit doppelten Abschmelzkapillaren versehen waren.

In einem Bombenrohr wurde tensionsreines II mit Diboran (im Überschuß) zusammenkondensiert und nach Abschmelzen unter Hochvak. langsam aufgetaut. Bei -60° setzte eine Reaktion unter Bildung eines weißen Festproduktes ein. Nach 5stdg. Reaktion bei -20° wurde das Bombenrohr an der Hochvak.-Apparatur wieder geöffnet und die bis 0° flüchtigen Anteile abdestilliert und fraktioniert. An flüchtigen Produkten konnte nur Diboran und etwas nicht umgesetztes Ausgangsprodukt erhalten werden.

Vers.	m M ol	einges.	mMo	l zurück	Umsetzungsverhältnis		
Nr.	П	B_2H_6	II	B_2H_6	II:BH ₃		
1	12.70	9.34	0.78	3.38	1:1.00		
2	6.31	4.94	0.00	1.75	1:1.01		

 $CH_3SN(C_2H_5)_2 \cdot BH_3$ (IV) ist offensichtlich nur bei tiefer Temperatur beständig und lagert sich bei Raumtemperatur, wie das IR-Spektrum zeigt, in $CH_3SBH_2 \cdot HN(C_2H_5)_2$ um.

IR-Spektrum (Frequenzen in cm⁻¹): 3185 st, 2958 sst, 2924 st, 2809 s,S, 2584 s, 2439 s,S, 2364 sst, 2273 s, 1468 st, 1449 st, 1410 st, 1381 st, 1299 m, 1297 m, 1186 sst, 1166 sst, 1146 st, 1107 m, 1057 m,diff., 1024 m,diff., 948 s, 898 s, 861 s,diff., 787 s,diff.

Das so entstandene N-Diäthyl-B-methylmercapto-borazan (V) ist eine unterhalb von 0° schön kristalline, weiße Substanz, Schmp. 1°, die im Hochvak. nicht mehr destillierbar ist (Tension bei 30° ~1 Torr). Eine Dampfdruckkurve konnte nicht aufgenommen werden, da bei erhöhter Temperatur langsam Dissoziation in CH₃SBH₂ und (C₂H₅)₂NH eintritt. Beim Erhitzen auf 200° war keine äußere Veränderung feststellbar (Schmp. unverändert 1°). Erst nach 12 Stdn. bei 280° hatten sich 10.19 mMol Wasserstoff (aus 11.92 mMol V) gebildet. Das Reaktionsgemisch konnte nun fast vollständig i. Hochvak. destilliert werden. Es besaß ein Molekulargewicht von 138 (kryoskop. in Benzol) und konnte durch wiederholte frakt. Kondensation (Ausgangsbad: 10°, Vorlage 1: 0°, 2: -120°, 3: -183°) in eine farblose Flüssigkeit, Methylmercapto-diäthylamino-boran (VI) (1.35 g, Schmp. -122°, 0°-Tension 3 Torr), und in eine kleine Menge weißer Kristalle, N-Diäthyl-borazen, zerlegt werden.

Methylmercapto-diathylamino-boran, CH₃-S-BH-N(C₂H₅)₂ (VI)

 $C_5H_{14}BNS$ (131.1) Ber. B 8.25 N 10.69 H $^{\odot}$ 0.77 Gef. B 8.31 N 10.75 H $^{\odot}$ 0.78 $^{18)}$ Mol.-Gew. 132.0 (kryoskop. in Benzol)

Das N-Diäthyl-borazen konnte auf Grund des Schmp. von 45° (Lit. 19): 46°) und der Mol.-Gew.-Bestimmung (kryoskop. in Benzol, 172), als in dimerer Form vorliegend, identifiziert werden.

¹⁸⁾ Die Zersetzung der Substanzen erfolgte im Bombenrohr mit 1 n H₂SO₄ bei 120°.

¹⁹⁾ H. Beyer, Dissertat. S. 143, Univ. München 1960.

Reaktion von Methylsulfenyl-dimethylamin (I) mit Diboran

1.2658 g I (13.88 mMol) wurden mit 8.75 mMol Diboran in einem Bombenrohr bei -70 bis -40° umgesetzt. Neben 0.58 mMol Wasserstoff war an leichtflüchtigen Produkten nur 1.50 mMol überschüssiges Diboran vorhanden:

Umsetzungsverhältnis: I: BH₃ = 1:1.04.

Das Reaktionsprodukt wurde dann 2 Tage im abgeschlossenen System auf 120° erhitzt, dabei waren 8.32 mMol H_2 (60% d. Th.) entstanden. Aus dem flüssigen Reaktionsgemisch konnten nur 2 Substanzen rein herausfraktioniert und identifiziert werden; im Bombenrohr verblieb ein nichtflüchtiges Öl, das nicht identifiziert wurde.

- 1. Bis-dimethylamino-boran, ((CH₃)₂N)₂BH: Ausb. 70 mg, 0°-Tension 8 Torr, Mol.-Gew. ber. 100.0, gef. (Dumas) 98.0 (Lit.: 0°-Tension 8 ¹⁹) bzw. 11 ²⁰) Torr).
- 2. N-Dimethyl-B-methylmercapto-borazan, CH₃SBH₂·HN(CH₃)₂: Ausb. 260 mg, farblose Flüssigkeit, 0°-Tension 6 Torr.

```
C<sub>3</sub>H<sub>12</sub>BNS (105.0) Ber. B 10.30 N 13.34 H^{\oplus} 1.92 Gef. B 9.85 N 12.65 H^{\oplus} 1.76<sup>18</sup> Mol.-Gew. 105.3 (Dumas)
```

Bei einer zweiten Umsetzung ließen wir auf 1.0190 g I (11.20 mMol) überschüssiges Diboran bei 110° 10 Stdn. einwirken. Nach Absaugen des entstandenen H₂ (6.44 mMol) mit der Töplerpumpe konnte bei der Fraktionierung (Ausgangsbad: -45°, Vorlage 1: -70°, 2: -140°, 3: -183°) in 2 97.2 mg Dimethylaminodiboran, (CH₃)₂NB₂H₅, erhalten werden. Schmp. -56°, 0°-Tension 103 Torr, Mol.-Gew. ber. 70.8, gef. 71.1 (Dumas) (Lit. ¹²⁾: Schmp. -54°, 0°-Tension 103 Torr).

Aus 1 wurden durch wiederholtes Abdestillieren aus einem 0°-Bad 411 mg Methylmercaptodimethylamino-boran, CH₃-S-BH-N(CH₃)₂, mit der 0°-Tension von 13 Torr erhalten.

 $C_3H_{10}BNS$ (103.0) Ber. N 13.60 H $^{\odot}$ 0.97 Gef. N 13.34 H $^{\odot}$ 1.03 Mol.-Gew. 102.3 (Dumas)

Weitere schwefelhaltige Produkte konnten nicht identifiziert werden.

²⁰⁾ A. B. Burg und C. L. Randolph, J. Amer. chem. Soc. 73, 953 [1951].

²¹⁾ E. Wiberg und A. Bolz, Z. anorg. Chem. 257, 131 [1948].